

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Simultaneous absorption of NO_x and SO_2 from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone

Sun Wei-yi, Ding Sang-lan, Zeng Shan-shan, Su Shi-jun*, Jiang Wen-ju

Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China

A R T I C L E I N F O

Article history: Received 27 January 2011 Received in revised form 27 April 2011 Accepted 28 April 2011 Available online 5 May 2011

Keywords: Ozone Pyrolusite slurry Simultaneous absorption of NO_x and SO₂ Manganese sulphate Manganese nitrate

ABSTRACT

NO was oxidized into NO₂ first by injecting ozone into flue gas stream, and then NO₂ was absorbed from flue gas simultaneously with SO₂ by pyrolusite slurry. Reaction mechanism and products during the absorption process were discussed in the followings. Effects of concentrations of injected ozone, inlet NO, pyrolusite and reaction temperature on NO_x/SO₂ removal efficiency and Mn extraction rate were also investigated. The results showed that ozone could oxidize NO to NO₂ with selectivity and high efficiency, furthermore, MnO₂ in pyrolusite slurry could oxidize SO₂ and NO₂ into MnSO₄ and Mn(NO₃)₂ in liquid phase, respectively. Temperature and concentrations of injected ozone and inlet NO had little impact on both SO₂ removal efficiency dropped to 90%. NO_x removal efficiency increased with the increasing of ozone concentration, inlet NO concentration and pyrolusite concentration, however, it remained stable when reaction temperature increased from 20 °C to 40 °C and decreased when the flue gas temperature exceeded 40 °C. NO_x removal efficiency reached 82% when inlet NO at 750 ppm, injected ozone at 900 ppm, concentration of pyrolusite at 500 g/L and temperature at 25 °C.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Due to the fact that SO_2 is a key contributor to "acid rain" [1] and NO_x also contributes considerably to both "acid rain" [1] and "greenhouse effect" [2], emissions of SO₂ and NO_x, mainly from combustion of coal and fuel oils, have brought about significant effects on both environment and human health [3]. Various kinds of technologies have been developed to control and reduce SO₂ and NO_x emissions worldwide. Though high SO₂ removal efficiency can be obtained by wet SO₂ removal process which is widely used at present, it is difficult to attain the high NO_x removal efficiency at the same time because of the low solubility of NO that accounts for more than 90% of all NO_x [4,5]. Moreover, the presence of SO₂ can also lead to catalyst poisoned and invalidation in selective catalytic reduction (SCR) process [6,7], which is considered as the most effective process for NO_x removal. Hence, currently a relatively mature solution for removing SO₂ and NO_x is referred as an integrated setup consisting of wet process for SO₂ removal and selective catalytic reduction (SCR) for NO_x removal. The two independent systems can remove SO_2 and NO_x step by step with high efficiency, but with drawbacks such as large areas, complex system, high investment and operation cost [7–9]. In order to overcome above-mentioned problems, a large number of strong oxidizing agents are added into NO_x removal process [10–21] to obtain the satisfying NO_x removal efficiency as SO₂ in wet process. These approaches are divided into absorption-oxidation process [2,10-14] and oxidation-absorption process [8,15-21]. In absorption-oxidation process, liquid oxidants with strong oxidability are used as absorbent, such as sodium chlorite [10-12], hydrogen peroxide [13] and potassium permanganate [2,14]. Although using strong oxidizing agents can improve NO_x removal efficiency, there are certain drawbacks, such as the expensive cost of oxidizing agents [4,22] and disposal problems of absorption solution [22]. While in oxidation-absorption process, gas phase oxidants, such as hydrogen peroxide [15,16] and ozone [8,17–21], are injected into flue gas first to oxidize NO to NO₂ which is highly soluble in water, and then NO₂ and SO₂ can be removed simultaneously by wet removal process. Ozone has proved to be an efficient gas phase oxidant with advantages of selectivity, high oxidation efficiency, fast oxidation speed and nonpollution decomposition products, etc. [8,17–21]. With respect to the liquid phase absorption of oxidized flue gas, NO_x removal efficiency could reach more than 80% regardless of alkali liquor [8,18,19] or reducing Na₂S [20,21] used.

China has a rich reserve of pyrolusite, of which more than 90% is low-grade with the average content of Mn at 22% [23]. This kind of pyrolusite is not economic in metallurgy not only due to its low content of Mn, but also due to its high operating cost and emissions of pollutants. That is because Mn exists in the form of MnO₂

^{*} Corresponding author at: Department of Environmental Science and Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan Province 610065, China. Tel.: +86 28 8546 0916; fax: +86 28 8546 0916.

E-mail address: ssjscu@163.com (S.-j. Su).

^{0304-3894/\$ -} see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2011.04.104

which cannot react with H_2SO_4 and will be reduced into MnO first by carbon, leading to a huge amount of CO_2 . However, as an oxidant, MnO₂ is able to oxide reducing substance. Because of this function, pyrolusite is commercially used in the field of waste treatment, removing organic matter [24–28] and inorganic matter [29–31] in wastewater and SO₂ [32–34] from exhaust gas. A great deal of research on SO₂ removal with pyrolusite slurry has been carried out in our earlier work [32–34], with high SO₂ removal efficiency and product MnSO₄·H₂O of which the quality could reach GB1622286 of China, the industry grade standards. The application of simultaneous removal of NO_x and SO₂ with pyrolusite as absorbent has not been reported.

In this work, the objective of the research was to introduce a new process that could obtain the simultaneous removal of NO_x and SO_2 from flue gas with resource utilization process of low-grade pyrolusite. Pyrolusite was used as an absorbent in liquid phase to remove SO_2 and NO_x simultaneously from flue gas and ozone was injected into flue gas stream to oxidized NO into NO_2 to increase solubility of NO_x . Reaction mechanism and products during the absorption process were studied, and effects of process parameters on both NO_x and SO_2 removal efficiencies and Mn extraction rate were also investigated.

2. Theoretical

The simultaneous removal system of NO_x and SO_2 consists of two processes: gas-phase oxidation of NO using ozone and absorption of NO_x and SO_2 with pyrolusite slurry. Oxidation of NO in gas phase is the first step. When ozone is used as oxidant, NO_2 is the predominant oxidation product through reaction (1), although NO_3 and N_2O_5 are also produced at the same time [8,20,21].

$$NO + O_3 = NO_2 + O_2$$
(1)

The process of simultaneous absorption of NO₂ and SO₂ with pyrolusite slurry from flue gas is a complex system, which involves gas-liquid-solid mass transfer, chemical reactions in liquid phase, and chemical reactions on pyrolusite surface. Gas dissolution, the process of gas-liquid mass transfer, is the first step of the whole absorption procedure. SO₂ dissolves into water and produces H₂SO₃, HSO₃⁻ and SO₃²⁻ by ionization equilibrium, while NO₂ can react with water to generate HNO₂ and HNO₃ [35–38]. At the same time, O₂ dissolves into liquid phase in equilibrium with the residual O₂ in flue gas. Therefore, H₂SO₃, HSO₃⁻, SO₃²⁻ are the existence forms of S(IV) species, and NO₂ and HNO₂ are the existence forms of nitrogen species which can react with O₂ in liquid phase and MnO₂ on pyrolusite surface. The E-pH diagrams of Mn-SO₂-NO_x-H₂O system (Fig. 1) are developed based on thermodynamic data from [39] to analyze reactions that may take place in liquid phase and on pyrolusite surface.

Fig. 1 illustrates that in the $Mn-SO_2-NO_x-H_2O$ system, oxidation potential of MnO_2 and O_2 are higher than that of S(IV) species, NO_2 and HNO_2 , indicating that MnO_2 and O_2 have the potential to oxidize them to SO_4^{2-} and NO_3^- , respectively. Accordingly, there are two reaction patterns in the process of SO_2/NO_x removal in flue gas with pyrolusite slurry: (1) MnO_2 as oxidant; (2) O_2 as oxidant. The exact reactions are presented as follows:

$$MnO_2 + SO_2 = Mn^{2+} + SO_4^{2-}$$
(2)

$$SO_2 + H_2O + (1/2)O_2 = 2H^+ + SO_4^{2-}$$
 (3)

$$MnO_2 + 2NO_2 = Mn^{2+} + 2NO_3^{-}$$
(4)

$$(1/2)O_2 + 2NO_2 + H_2O = 2H^+ + 2NO_3^-$$
(5)

$$H^{+} + MnO_{2} + HNO_{2} = Mn^{2+} + NO_{3}^{-} + H_{2}O$$
(6)

$$O_2 + 2HNO_2 = 2H^+ + 2NO_3^-$$
(7)

Fig. 1. *E*-pH diagram of Mn–SO₂–NO_x–H₂O system.

Fig. 2. Experimental apparatus and flow. (1). O_2 cylinder; (2). N_2 -SO₂ cylinder; (3). N_2 -NO cylinder; (4). N_2 cylinder; (5). relief valve; (6). gas flow meter; (7). ozone generator; (8). ozonizing chamber; (9). agitated bubbling reactor; (10). gas pipe inlet; (11). gas pager; (12). gas pipe outlet; (13). sampling port; (14). gas analyzer; (15). heater

From reactions (2)–(7), it can be seen that under the condition of MnO_2 acting as oxidant, Mn^{2+} was produced as reduction product and products of $MnSO_4$ and $Mn(NO_3)_2$ were obtained. In the case of O_2 being oxidant, H_2SO_4 and HNO_3 were obtained.

3. Experiments

3.1. The experimental system

The experimental system is divided into four parts, i.e., experimental materials supply system, ozone oxidization system, flue gas treatment unit and sampling cum analysis system. A schematic diagram of the experimental set-up is shown in Fig. 2.

3.1.1. Experimental materials supply system

The system mainly consists of simulated flue gas supply and pyrolusite slurry preparation. The simulated flue gas was obtained by the control of mixing different standard gases using gas flow meters and the standard gases include O₂, SO₂, NO and N₂ whose purity were all over 99.9%. Ozone was carried out in an ozone generator with oxygen source (DX-SS1, Harbin Jiujiu Electrochemical Co., Ltd., China), in which output ozone concentration was 0–10 mg/L, and five gears were prepared to change the outlet ozone concentration according to experiment requirement. The feed pyrolusite slurry was prepared by mixing tap water with a required amount

126

Table 1 Compositions of pyrolusite(wt%).

-		•					
MnO_2	Fe	Ca	К	Mg	Pb	Ni	Со
27.16	3.44	3.46	1.70	0.58	0.10	0.032	0.01

Table 2

Constant experimental parameters for experiments.

Experiment parameter	Value
Flow rate of gas, L/min	15
Volume of pyrolusite slurry, L	5
Concentration of O ₂ , %	5
Agitator speed, rpm/min	300

of commercial pyrolusite from Guangxi Province, China, and the compositions are shown in Table 1.

3.1.2. Ozone oxidization system

The oxidizations of NO and SO_2 in flue gas using ozone is taken place in an ozonizing chamber, which was a cylindrical glass tube with inner diameter and length of 5 and 25 cm. Effective volume of ozonizing chamber was calculated to be 500 cm³.

3.1.3. Flue gas treatment unit

The absorption of NO₂ and SO₂ with pyrolusite slurry is taken in a bubbling reactor, which is a well-stirred sealed vessel (ID, 18.5 cm; height, 38 cm) with internal volume of 10 L. Continuous stirring was provided by a mechanical agitator (4 blades disc, turbine type impeller) with a speed of 300 rpm/min. The pH values were detected by METTLER TOLEDO pH combination electrode (405-DPAS-SC-K8S/325). Temperature was proved by an electrical heater at the bottom of reactor and detected by temperature electrode (T817-A-3, Shanghai Precision and Scientific Instrument Co., Ltd., China). There was also an intelligent PID (Proportion Integration Differentiation) temperature control system, which can make sure the error range of temperature to be within 1 °C.

3.1.4. Sampling cum analysis system

Negative ions in reactor were analyzed by ion chromatograph (Dionex-ICS-2500). Concentrations of SO₂, NO_x and O₂ in inlet and outlet flue gas were detected by a set of online gas analyzer (SMC-9021, Sick Maihak Co., Ltd., Beijing, China). Concentrations of manganese in both liquid samples and pyrolusite were determined by atomic absorption spectrometer (AA7000 Institute of Eastwest Electronic Technology of Beijing, China). Ozone concentration was measured by the iodometric procedure (Ozone Standards Committee Method), in which ozone was absorbed by neutral solution of potassium iodine and then the solution was acidified and the liberated iodine was drawn of by the sodium thiosulphate [40].Experiment parameters

In our research, flue gas was oxidized by ozone continuously in gas phase and then absorbed by pyrolusite slurry in liquid phase under semi-batch condition. Some experiment parameters, including inlet ozone concentration, inlet NO concentration, reaction temperature and the pyrolusite slurry concentration, were changed in order to examine their effects on NO_x/SO_2 removal efficiency and Mn extraction rate. The constant experimental parameters for the whole experiment were displayed in Table 2.

With regard to an oxidation–absorption process for NO_x and SO_2 removal combined ozone with pyrolusite slurry, the main parameters considered include oxidation rate of NO/SO_2 , removal efficiency of NO_x/SO_2 and Mn extraction rate. In order to clearly explain analytical methods for these parameters, the flue gas before oxidized was called "inlet flue gas" and the flue gas oxidized by

Fig. 3. Variations of oxidation rate of NO and SO_2 with injected ozone concentration (concentration of NO, 1500 ppm; reaction temperature, 25 °C).

ozone but before absorbed was called "oxidized flue gas" and the flue gas absorbed was called "oulet flue gas".

The oxidation rate of NO/SO₂ was analyzed as follows:

Oxidization rate (%) =
$$\frac{C_{\text{inlet}} - C_{\text{oxidized}}}{C_{\text{inlet}}} \times 100$$
 (8)

where, C_{inlet} is the concentration of NO/SO₂ in inlet flue gas, ppm; C_{oxidized} is the concentration of NO/SO₂ in oxidized flue gas, ppm.

The removal efficiency of NO_x/SO_2 was analyzed as follows:

Removal efficiency (%) =
$$\frac{C_{\text{inlet}} - C_{\text{outlet}}}{C_{\text{inlet}}} \times 100$$
 (9)

where, C_{inlet} is the concentration of NO_x/SO₂ in inlet flue gas, ppm; C_{outlet} is the concentration of NO_x/SO₂ in outlet flue gas, ppm

Equation for expressing manganese extraction rate as follows:

Mn extraction rate (%) =
$$\frac{m_{\text{liquidoid}}}{m_{\text{total}}} \times 100$$
 (10)

where, $m_{\text{liquidoid}}$ is the net mass of Mn²⁺ in liquid phase in reactor, g; m_{total} is the net mass of Mn in liquid and pyrolusite, g.

4. Results and discussion

4.1. Oxidations of NO and SO₂ using ozone in gas phase

The oxidation efficiency of ozone, which was served as a gasphase oxidant, determined the NO_x existing form in flue gas, as a result of affecting the NO_x removal efficiency. This thesis examined the effect of ozone concentration on oxidation rates of NO and SO_2 . The results were briefly summarized in Fig. 3.

Fig. 3 showed that ozone could oxidize NO in flue gas contrapuntally and effectively, and the NO oxidation rate went up with the ozone concentration linearly. When injected ozone was at about 750 and 900 ppm, the NO oxidation rate turned out to be 88% and 97%, respectively. But ozone had little impact on SO₂ oxidation, that is, the oxidation rate of SO₂ was less than 5% as injected ozone was at about 900 ppm. The selectivity of ozone on NO oxidation could save the oxidant cost.

4.2. Reaction mechanism and products during absorption process

4.2.1. Effects of ozone and pyrolusite on NO_x removal efficiency

The research studied the effect of ozone and pyrolusite slurry on NO_x removal efficiency in a wet process. Variations of pH value, output NO concentration and NO_x removal efficiency were displayed

Table 3

Concentrations of species in liquid phase.

	pН	$NO_3^-/mol L^{-1}$	$NO_2^-/mol L^{-1}$	$Mn^{2+}/mol L^{-1}$
NO + pyrolusite(10 g/L)	3.67	0.025	0.0040	0.0089
NO + ozone(1800 ppm) + running water	0.95	0.1203	0.0107	-
NO + ozone(1800 ppm) + pyrolusite(10 g/L)	1.14	0.1384	0	0.0280

Concentration of NO, 1500 ppm; reaction temperature, 25 °C.

Table 4

Relationship of total amount between SO₂/NO_x removed from flue gas and SO₄²⁻, NO₃⁻ in liquid phase.

Nitrogen species			Sulphur species	Sulphur species			
NO _x removed from flue gas (A ₁)/mol	NO3 [–] in liquid phase (B1)/mol	Ratio of A_1/B_1	SO ₂ removed from flue gas (A ₂)/mol	SO ₄ ^{2–} in liquid phase (B ₂)/mol	Ratio of A_2/B_2		
0.0623	0.0591	1.054:1	0.2172	0.209	1.039: 1		

Concentration of NO, 750 ppm; concentration of SO₂, 2000 ppm; concentration of ozone, 900 ppm; concentration of pyrolusite, 40 g/L; reaction temperature, 25 °C.

in Fig. 4. Concentrations of species in liquid phase at the end of reaction were exhibited in Table 3.

As shown in Fig. 4 and Table 3, when there was no ozone in the system, NO_x removal efficiency was around 15% (Fig. 4(b)), and the manganese concentration in liquid phase appeared to be quite low (Table 3). This was mainly due to the fact that NO is insoluble and the reaction was controlled by gas–liquid mass transfer [41]. Reversely when 1800 ppm ozone was injected into system, NO_x removal efficiency increased to about 75% (Fig. 4(b)). The rea-

Fig. 4. (a) Variations of Output NO concentration and (b) NO_x removal efficiencies in different removal process (concentration of NO, 1500 ppm; reaction temperature, $25 \circ C$).

son was that NO could be oxidized into NO₂, which is more soluble than NO. If the absorbent was water, the output NO concentration increased from 25 to 152 ppm with reaction time (Fig. 4(a)) and NO_x removal efficiency decreased (Fig. 4(b)). The main reason was that a great amount of HNO₃ produced in the system made pH value drop to 0.95 (Table 3), resulting in the decomposition of HNO₂. If pyrolusite slurry was used as absorbent, output NO only increased from 25 to 52 ppm (Fig. 4(a)) and NO_x removal efficiency could still reach achieve 70% (Fig. 4(b)), and no HNO₂ was detected in liquid phase (Table 3). This illustrated that MnO₂ in pyrolusite slurry could consume HNO₂ and NO₂ immediately, preventing HNO₂ from decomposition and enhancing NO_x removal efficiency.

4.2.2. Simultaneous absorption of NO_x and SO₂ with pyrolusite slurry combined with gas-phase oxidation of NO using ozone

NO in flue gas was oxidized into NO₂ by ozone in gas phase. The oxidized flue gas was continuously entered into reactor filled with a certain volume and concentration of pyrolusite slurry. Variations of SO₂/NO_x removal efficiency, pH value and Mn extraction rate with reaction time were displayed in Fig. 5. The relationship of total amount between SO₂ and NO_x removed from flue gas and SO₄^{2–}, NO₃⁻ in liquid phase were all listed in Table 4.

Results collected in Fig. 5(a) indicated that Mn extraction rate increased and pH decreased gradually with reaction time. In the former 8 h, SO₂ and NO_x removal efficiencies remained relatively stable at 100% and 74% (Fig. 5(b)). While 8 h later, pH value was lower than 1.0 (Fig. 5(a)) and SO₂ removal efficiency began to decrease and output NO concentration came to increase (Fig. 5(b)). When reaction lasted for 14 h, Mn extraction rate arrived at 92% and pH value decreased to 0.68 (Fig. 5(a)). Furthermore, output NO reached to 45 ppm, SO₂ and NO_x removal efficiencies were reduced to 79% and 70% (Fig. 5(b)), respectively.

According to mechanism discussed in section 1, S(IV) species, NO_2 and HNO_2 in liquid phase were oxidized by both of MnO_2 and O_2 . With the gradual reduction of MnO_2 in the liquid phase, the system oxidation would be diminished, leading to the decrease of SO_2 and NO_x removal efficiencies. On the other hand, through reactions (3), (5) and (7), H_2SO_4 and HNO_3 were produced and led to pH value decreasing, the low solubility of SO_2 and the decreasing SO_2 and NO_x removal efficiencies.

Table 4 showed that both ratios of total amount of NO_x/SO_2 removed from flue gas to NO_3^-/SO_4^{2-} in liquid phase were about 1:1, indicating that the products of SO_2 and NO_x removal process were SO_4^{2-} and NO_3^- , without other valence states of sulphur species, nitrogen species or sulphur–nitrogen compounds produced. This was owing to the fact that H_2SO_4 and HNO_3 produced in system resulted in the lower pH value, while the oxidation poten-

Fig. 5. Parameter variation characters of SO₂/NO_x removal system with pyrolusite slurry (concentration of NO, 750 ppm; concentration of SO₂, 2000 ppm; concentration of ozone, 900 ppm; concentration of pyrolusite, 40 g/L; reaction temperature, 25 °C). (a) Variations of pH and output NO concentration with reaction time. (b) Variations of SO₂/NO_x removal efficiency and Mn extraction rate with reaction time.

tial of MnO₂ went up with lower pH, thus a strong oxidation system was formed to oxidize the S(IV) species, NO₂ and HNO₂ in liquid phase into SO_4^{2-} and NO_3^{-} , respectively.

The variations of various parameters in system showed that Mn extraction rate increased and pH decreased with reaction time, while SO_2 and NO_x removal efficiencies decreased with the increasing Mn extraction rate and decreasing pH. Therefore, in order to obtain satisfying NO_x removal efficiency and Mn extraction rate with high SO_2 removal efficiency at the same time, we set the SO_2 removal efficiency at the same time, we set the SO_2 removal efficiency at the same time, we set the SO_2 removal efficiency at 90% as the end of semi-batch reaction. The effects of temperature and concentrations of ozone, inlet NO and pyrolusite on NO_x removal efficiency and Mn extraction rate were discussed on the base of SO_2 removal efficiency at 90%.

4.3. Effect of ozone concentration on $NO_{\rm x}$ removal efficiency and Mn extraction rate

Ozone concentration determined NO oxidation rate and affected NO_x absorption efficiency. The effects of injection ozone concentration on NO_x removal efficiency and Mn extraction rate were studied. The experimental results were shown in Fig. 6.

Fig. 6 indicated that the Mn extraction rate maintained at about 85%, while NO_x removal efficiency increased from 15% to 75% when the ozone concentration rose from 0 to 900 ppm. This is mainly due to the fact that the increasing injection ozone concentration increased NO_x oxidation rate and accelerated the NO_x dissolution, which were helpful for the removal efficiency.

Fig. 6. Variations of NO_x removal efficiency and Mn extraction rate with injected ozone concentration (concentration of NO, 750 ppm; concentration of SO₂, 2000 ppm; concentration of pyrolusite, 40 g/L; reaction temperature, $25 \,^{\circ}$ C).

Fig. 7. Variations of NO_x removal efficiency and Mn extraction rate with inlet NO concentration (concentration of SO₂, 2000 ppm; concentration of pyrolusite, 40 g/L; reaction temperature, $25 \degree$ C).

4.4. Effect of NO concentration on NO_x removal efficiency and Mn extraction rate

Effect of inlet NO concentration on the simultaneous removal of SO_2 and NO_x was investigated and results were displayed in Fig. 7. Molar ratio of ozone to NO remained at 1.2:1.

As shown in Fig. 7, inlet NO concentration had trivial effect on Mn extraction rate. NO_x removal efficiency increased slightly when inlet NO concentration increased from 250 to 1250 ppm, The reason might be that the gas–liquid mass transfer rate of NO_x was proportional to the concentration driving force according to film theory and the increase of gas partial pressure increased the concentration driving force between gas phase and liquid phase [11]. As a result, the gas–liquid mass transfer rate of NO_x was enhanced.

4.5. Effects of temperature on NO_x removal efficiency and Mn extraction rate

Temperature was changed from about 30 °C to 70 °C in order to examine its effect on NO_x removal efficiency and Mn extraction rate.

Fig. 8 indicated that the Mn extraction rate increased first and then dropped with the rise of reaction temperature. The highest Mn extraction rate of 86% was achieved at 50 °C. NO_x removal efficiency remained stable at 74% with the increase of reaction temperature from 20 °C to 40 °C, but decreased when the flue gas temperature

Fig. 8. Variations of NO_x removal efficiency and Mn extraction rate with temperature (concentration of NO, 750 ppm; concentration of SO₂, 2000 ppm; concentration of ozone, 900 ppm; concentration of pyrolusite, 40 g/L).

Fig.9. Variations of SO₂/NO_x removal efficiency with pyrolusite concentration (concentration of NO, 750 ppm; concentration of SO₂, 2000 ppm; reaction temperature, $25 \degree$ C).

exceeded 40 °C. It could be explained from two aspects positively or negatively. On one hand, the increase of the temperature could enhance mass transfer coefficient of NO_x and SO_2 and promoted the reaction rate [11,32]. On the other hand, with the rise of the reaction temperature, the decomposition of HNO_2 was promoted, and the absorption of SO_2 was also inhibited because of the reduction of the solubility [32]. When the positive effect was greater than the negative effect, the NO_x removal efficiency and Mn extraction rate increased, otherwise, they decreased.

4.6. Effect of pyrolusite concentration on simultaneous removal of SO_2 and NO_x

Some experiments were also performed to investigate the effect of pyrolusite concentration on SO_2/NO_x removal efficiency.

According to Fig. 9, SO₂ removal efficiency was nearly 100% and NO_x removal efficiency improved with higher pyrolusite concentration, when pyrolusite concentration was kept at 500 g/L and NO_x removal efficiency reached 82%. This is due to the fact that pyrolusite dispersed throughout aqueous phase as solid particles, which was favorable to increase gas–liquid interfacial area by breaking gas bubbles and preventing its combination, enhancing gas–liquid mass transfer rate of NO_x [42,43].

5. Conclusions

Simultaneous absorption process of NO_x and SO₂ from flue gas with pyrolusite slurry combined with gas-phase oxidation of NO using ozone was investigated. Ozone could oxidize NO to NO₂ with selectivity and high efficiency, furthermore, MnO₂ in pyrolusite slurry could oxidize SO₂ and NO₂ into MnSO₄ and Mn(NO₃)₂ in liquid phase, respectively. Temperature and concentrations of injected ozone and inlet NO had little impact on both SO₂ removal efficiency and Mn extraction rate. Mn extraction rate remained steady at around 80–86% when SO₂ removal efficiency dropped to 90%. NO_x removal efficiency reached 82% when inlet NO at 750 ppm, injected ozone at 900 ppm, concentration of pyrolusite at 500 g/L and temperature at 25 °C.

The new process employed low-grade pyrolusite as an absorbent to remove NO_x and SO_2 from flue gas and obtained the mixed solution of $Mn(NO_3)_2$ and $MnSO_4$ economically in the mean time, which controlled the pollution of NO_x and SO_2 and realized the resource utilization process. In this way, the new process has good potential to be put into practice.

Acknowledgement

This project is founded by the National High Technology Research and Development Program of China (863 Program), 2008AA06Z316.

References

- H. Chu, T.W. Chien, S.Y. Li, Simultaneous absorption of SO₂ and NO from flue gas with KMnO₄/NaOH solutions, Sci. Total Environ. 275 (2001) 127–135.
- [2] V. Ramanathan, Y. Feng, Air pollution, greenhouse gases and climate change: global and regional perspectives, Atmos. Environ. 43 (2009) 37–50.
- [3] H.S. Zhu, Y.P. Mao, X.J. Yang, et al., Simultaneous absorption of NO and SO₂ into Fe^{II}-EDTA solution coupled with the Fe^{II}-EDTA regeneration catalyzed by activated carbon, Sep. Purif. Technol. 74 (2010) 1–6.
- [4] X. Long, Z. Xin, M. Chen, W. Li, W. Xiao, W. Yuan, Kinetics for the simultaneous removal of NO and SO₂ with cobalt ethylenediamine solution, Sep. Purif. Technol. 58 (2008) 328–334.
- [5] D.S. Jin, B.R. Deshwal, Y.S. Park, H.K. Lee, Simultaneous removal of SO₂ and NO by wet scrubbing using aqueous chlorine dioxide solution, J. Hazard Mater. B135 (2006) 412–417.
- [6] X. She, M. Flytzani-Stephanopoulos, Activity and stability of Ag–alumina for the selective catalytic reduction of NO_x with methane in high-content SO₂ gas streams, Catal. Today 127 (2007) 207–218.
- [7] L. Wang, W. Zhao, Z. Wu, Simultaneous absorption of NO and SO₂ by FeII–EDTA combined with Na₂SO₃ solution, Chem. Eng. J. 132 (2007) 227–232.
- [8] Z. Wang, J. Zhou, Y. Zhu, Z. Wen, J. Liu, K. Cen, Simultaneous removal of NO_x, SO₂ and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results, Fuel Process. Technol. 88 (2007) 817–823.
- [9] Y. Zhao, P. Xu, D. Fu, J. Huang, H. Yu, Experimental study on simultaneous desulfurization and denitrification based on highly active absorbent, J. Environ. Sci. China 18 (2006) 281–286.
- [10] T.W. Chien, H. Chu, Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueous NaClO₂ solution, J. Hazard Mater. 80 (2000) 43–57.
- [11] Y. Zhao, T. Guo, Z. Chen, Y. Du, Simultaneous removal of SO₂ and NO using M/NaClO₂ complex absorbent, Chem. Eng. J. 160 (2010) 42–47.
- [12] T.W. Chien, H. Chu, H.T. Hsueh, Kinetic study on absorption of SO₂ and NO_x with acidic NaClO₂ solutions using the spraying column, J. Environ. Eng. ASCE 129 (2003) 967–974.
- [13] Y. Liu, J. Zhang, C. Sheng, Y. Zhang, L. Zhao, Simultaneous removal of NO and SO₂ from coal-fired flue gas by UV/H₂O₂ advanced oxidation process, Chem. Eng. J. 162 (2010) 1006–1011.
- [14] H. Chu, S.Y. Li, T.W. Chien, The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO₄/NaOH solutions, J. Environ. Sci. Health A 33 (1998) 801–827.
- [15] J.M. Kasper, C.A. Clausen III, C.D. Cooper, Control of nitrogen oxide emissions by hydrogen peroxide enhanced gas-phase oxidation of nitric oxide, J. Air Waste Manage. Assoc. 46 (1996) 127–133.
- [16] C.D. Cooper, C.A. Clausen, L. Pettey, et al., Investigation of UV enhanced H_2O_2 oxidation of NO_x emissions, Environ. Eng. 128 (2002) 68–72.
- [17] Y. Fu, U.M. Diwekar, Cost effective environmental control technology for utilities, Adv. Environ. Res. 8 (2003) 173–196.
- [18] Z.H. Wang, B. Li, A. Ehn, Z.W. Sun, Z.S. Li, J. Bood, M. Aldén, K.F. Cen, Investigation of flue-gas treatment with O₃ injection using NO and NO₂ planar laser-induced fluorescence, Fuel 89 (2010) 2346–2352.

- [19] Z. Wang, J. Zhou, J. Fan, K. Cen, Direct numerical simulation of ozone injection technology for NO_x control in flue gas, Energy Fuel 20 (2006) 2432–2438.
- [20] Y.S. Mok, H.J. Lee, Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technology, Fuel Process Technol. 87 (2006) 591–597.
- [21] Y.S. Mok, Absorption–reduction technique assisted by ozone injection and sodium sulfide for NO_x removal from exhaust gas, Chem. Eng. J. 118 (2006) 63–67.
- [22] K. Chandrasekara Pillai, S.J. Chung, T. Raju, I. Moon, Experimental aspects of combined NO_x and SO₂ removal from flue-gas mixture in an integrated wet scrubber-electrochemical cell system, Chemosphere 76 (2009) 657–664.
- [23] Z.Z. Tan, G.G. Mei, W.J. Li, Hydrometallurgy, Central South University Press, Changsha, 2004.
- [24] F.B. Li, C.S. Liu, C.H. Liang, et al., The oxidative degradation of 2mercaptobenzothiazole at the interface of β-MnO₂ and water, J. Hazard Mater. 154 (2008) 1098–1105.
- [25] H. Zhang, C. Huang, Oxidative transformation of fluoroquinolone antibacterial agents and structurally related amines by manganese oxide, Environ. Sci. Technol. 39 (2005) 4474–4483.
- [26] R.A. Petrie, P.R. Grossl, R.C. Sims, Oxidation of pentachlorophenol in manganese oxide suspensions under controlled *E_h* and pH environments, Environ. Sci. Technol. 36 (2002) 3744–3748.
- [27] P.S. Nico, R.J. Zasoski, Mn(III) center availability as a rate controlling factor in the oxidation of phenol and sulfide on δ-MnO₂, Environ. Sci. Technol. 35 (2001) 3338–3343.
- [28] H. Zhang, C. Huang, Reactivity and transformation of antibacterial N oxides in the presence of manganese oxide, Environ. Sci. Technol. 39 (2005) 593–601.
- [29] S.E. Fendorf, R.J. Zasoski, Chromium(III) oxidation by δ-MnO₂.1. Characterization, Environ. Sci. Technol. 26 (1992) 79–85.
- [30] X.H. Feng, Y.Q. Zu, W.F. Tan, et al., Arsenite oxidation by three types of manganese oxides, J. Environ. Sci. 18 (2006) 292–298.

- [31] X.J. Li, C.S. Liu, F.B. Li, et al., The oxidative transformation of sodium arsenite at the interface of α -MnO₂ and water, J. Hazard Mater. 173 (2010) 675–6381.
- [32] S.J. Shu, X.F. Zhu, Y.J. Liu, et al., A pilot-scale jet bubbling reactor for wet flue gas desulfurization with pyrolusite, J. Environ. Sci. China 17 (2005) 827–831.
- [33] J.D. Zhao, S.J. Su, N.S. Ai, et al., Modelling flue gas desulfurization using pyrolusite pulp in a jet bubbling reactor, Mater. Sci. Forum 610–613 (2009) 85–96.
- [34] J.D. Zhao, S.J. Su, X.F. Zhu, et al., Experimental study on macro-kinetics of flue gas desulfurization using pyrolusite pulp by a double magnetic stirred reactor, Mater. Sci. Forum 610–613 (2009) 32–40.
- [35] D. Thomas, J. Vanderschuren, The absorption-oxidation of NO_x with hydrogen peroxide for the treatment of tail gases, Chem. Eng. Sci. 51 (1996) 2649–2654.
 [36] Y. Li, Y.Z. Liu, L.Y. Zhang, et al., Absorption of NO_x into nitric acid solution in
- rotating packed bed, Chin. J. Chem. Eng. 18 (2010) 244–248.
- [37] D. Thomas, J. Vanderschuren, Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions, Sep. Purif. Technol. 18 (2000) 37–45.
- [38] J.A. Patwardhan, M.P. Pradhan, J.B. Joshi, Simulation of NO_x gas absorption under adiabatic condition and comparison with plant data, Chem. Eng. Sci. 57 (2002) 4831–4844.
- [39] Speight, G. James, Lange's Handbook of Chemistry, 16th ed., McGraw-Hill, New York, 2004.
- [40] IOA (International Ozone Association), Iodometric Method for The Determination of Ozone in A Process Gas, Quality Assurance Committee, Revised Standardized Procedure 001/96, 1996.
- [41] B.R. Deshwal, H.K. Lee, Mass transfer in the absorption of SO₂ and NO_x using aqueous euchlorine scrubbing solution, J. Environ. Sci. 21 (2009) 155–161.
- [42] A.M. Nienow, M. Kone, W. Bujuski, Studies on the three-phase mixing: a review and recent results, Chem. Eng. Res. Des. 64 (1986) 35–42.
- [43] M. Schmitz, A. Steiff, Gas/liquid interfacial area per unit volume and volumetric mass transfer coefficient in stirred slurry reactors, Chem. Eng. Technol. 10 (1987) 204–215.